Answer:
4. The solution to the system of equations is: (2,-1)
5. The solution to the system of equations is: (3,5)
Step-by-step explanation:
4. What is the solution to the system of equations?
[tex]2x+3y=1\\-3x+4y=-10[/tex]
Let:
[tex]2x+3y=1--eq(1)\\-3x+4y=-10--eq(2)[/tex]
Multiply eq(1) by 3 and eq(2) by 2 and add both equations
[tex]6x+9y=3\\-6x+8y=-20\\---------\\0x+17y=-17\\y=\frac{-17}{17}\\y=-1[/tex]
So, value of y=-1
Now finding the value of x bu putting value of y in eq(1)
[tex]2x+3y=1\\2x+3(-1)=1\\2x=1+3\\2x=4\\x=\frac{4}{2}\\x=2[/tex]
So, value of x=2
The solution to the system of equations is: (2,-1)
5. What is the solution to the system of equations?
[tex]y=2x-1\\6x-y=13[/tex]
Let:
[tex]-2x+y=-1--eq(1)\\6x-y=13--eq(2)\\------\\4x=12\\x=\frac{12}{4}\\x=3[/tex]
So, value of x=3
Putting value of x in equation 1 to find value of y
[tex]y=2x-1\\y=2(3)-1\\y=6-1\\y=5[/tex]
So, value of y=5
The solution to the system of equations is: (3,5)