Respuesta :

Answer:

The two numbers are 5.73 and 2,27

Step-by-step explanation:

Let the two numbers be x and y

[tex]x + y = 8[/tex]

[tex]xy = 13[/tex]

Make x the subject in the first equation

[tex]x = 8 - y[/tex]

Substitute 8 - y for x in the second equation

[tex](8-y)*y = 13[/tex]

Open brackets

[tex]8y - y^2 = 13[/tex]

Equate to 0

[tex]y^2 - 8y + 13 = 0[/tex]

Solve using quadratic formula

[tex]y = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 1[/tex]   [tex]b = -8[/tex]    [tex]c = 13[/tex]

So:

[tex]y = \frac{-(-8) \± \sqrt{(-8)^2 - 4*1*13}}{2*1}[/tex]

[tex]y = \frac{8 \± \sqrt{64 -52}}{2}[/tex]

[tex]y = \frac{8 \± \sqrt{12}}{2}[/tex]

[tex]y = \frac{8 \± 3.46}{2}[/tex]

Split

[tex]y = \frac{8 + 3.46}{2}[/tex] or [tex]y = \frac{8 - 3.46}{2}[/tex]

[tex]y = \frac{11.46}{2}[/tex] or [tex]y = \frac{4.54}{2}[/tex]

[tex]y = 5.73[/tex] or [tex]y = 2.27[/tex]

Recall that

[tex]x = 8 - y[/tex]

When [tex]y = 5.73[/tex]

[tex]x = 8 - 5.73[/tex]

[tex]x = 2.27[/tex]

When [tex]y = 2.27[/tex]

[tex]x = 5.73[/tex]

Hence, the two numbers are 5.73 and 2,27

ACCESS MORE
EDU ACCESS
Universidad de Mexico