Determine the value of x
A. 8
B. 4
C.8sqrt2
D. 8sqrt3

Answer:
The value of x is : [tex]\mathbf{8\sqrt{2}}[/tex]
Option C is correct.
Step-by-step explanation:
We need to find value of x
We are given Perpendicular = 8
Hypotenuse = x
and Ф= 45°
Using trigonometric identity
[tex]sin \theta=\frac{Perpendicular}{Hypotenuse}[/tex]
Putting values and finding x
[tex]sin \theta=\frac{Perpendicular}{Hypotenuse}\\sin \ 45^o=\frac{8}{x}\\\frac{1}{\sqrt{2} }= \frac{8}{x}\\\frac{1}{\sqrt{2} }x=8\\x=8\sqrt{2}[/tex]
So, the value of x is : [tex]\mathbf{8\sqrt{2}}[/tex]
Option C is correct.