Respuesta :

Answer:

Rewriting the equation in the form (x+c)²=d by completing the square

  • [tex]\left(x+5\right)^2=16[/tex]

The solutions to the quadratic equation are:

  • [tex]x=-1,\:x=-9[/tex]

Step-by-step explanation:

Given the equation

[tex]x^2+10x+22=13[/tex]

subtract 22 from both sides

[tex]x^2+10x+22-22=13-22[/tex]

simplify

[tex]x^2+10x=-9[/tex]

Rewriting the equation in the form (x+c)²=d by completing the square

[tex]x^2+10x+5^2=-9+5^2[/tex]

[tex]x^2+10x+5^2=16[/tex]

[tex]\left(x+5\right)^2=16[/tex]

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

solve

[tex]x+5=\sqrt{16}[/tex]

[tex]x+5=\sqrt{4^2}[/tex]

[tex]x+5=4[/tex]

[tex]x=-1[/tex]

also solving

[tex]x+5=-\sqrt{16}[/tex]

[tex]x+5=-4[/tex]

[tex]x=-9[/tex]

Therefore, the solutions to the quadratic equation are:

[tex]x=-1,\:x=-9[/tex]

ACCESS MORE
EDU ACCESS