Khan Academy please show work

Answer:
Rewriting the equation in the form (x+c)²=d by completing the square
The solutions to the quadratic equation are:
Step-by-step explanation:
Given the equation
[tex]x^2+10x+22=13[/tex]
subtract 22 from both sides
[tex]x^2+10x+22-22=13-22[/tex]
simplify
[tex]x^2+10x=-9[/tex]
Rewriting the equation in the form (x+c)²=d by completing the square
[tex]x^2+10x+5^2=-9+5^2[/tex]
[tex]x^2+10x+5^2=16[/tex]
[tex]\left(x+5\right)^2=16[/tex]
[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]
solve
[tex]x+5=\sqrt{16}[/tex]
[tex]x+5=\sqrt{4^2}[/tex]
[tex]x+5=4[/tex]
[tex]x=-1[/tex]
also solving
[tex]x+5=-\sqrt{16}[/tex]
[tex]x+5=-4[/tex]
[tex]x=-9[/tex]
Therefore, the solutions to the quadratic equation are:
[tex]x=-1,\:x=-9[/tex]