An unmanned satellite orbits the earth with a perigee radius of 10,000 km and an apogee radius of 100,000 km. Calculate:

a. the eccentricity of the orbit
b. the semimajor axis of the orbit(km)
c. the period of the orbit(hours)
d. the specific energy of the orbit(km^2/s^2)
e. the true anomaly at which the altitude is 1000km (degrees)
f. Vr and V(perpendicular) at the points found in part (e) (km/s)
g. the speed at the perigee and apogee (km/s)

Respuesta :

Solution :

Given :

radius of perigee, [tex]$r_p$[/tex] = 10,000 km

radius of apogee, [tex]$r_a$[/tex] = 100,000 km

a). Eccentricity of the orbit

  [tex]$e=\frac{|r_p-r_a|}{r_p+r_a}$[/tex]

[tex]$e=\frac{|10,000-100,000|}{10,000+100,000}$[/tex]

[tex]$e=\frac{9}{11}$[/tex]

or e = 0.818

b). Semi major axis of the orbit

  [tex]$a=\frac{r_p+r_a}{2}$[/tex]

  [tex]$a=\frac{10,000+100,000}{2}$[/tex]

     = 55,000 km

c). period of orbit

  [tex]$T=\frac{2\pi}{\sqrt{\mu}}\times a^{3/2}$[/tex]

Replacing μ with [tex]$398600 \ km^3/s^2$[/tex]

[tex]$T=\frac{2\pi}{\sqrt{398600}}\times (55,000)^{3/2}$[/tex]

[tex]$T=128304.04 \ s \left(\frac{1 \ hr}{3600 \ s}\right)$[/tex]

T = 35.64 hr

d). Specific energy of the orbit

[tex]$\varepsilon = -\frac{\mu}{2a}$[/tex]

[tex]$\varepsilon = -\frac{398600}{2 \times 55000}$[/tex]

[tex]$\varepsilon = -3.62 \ km^2/s^2$[/tex]

e). the equation of the distance to the focus

[tex]$\theta = \cos^{-1}\left(\frac{a(1-e^2)}{r}-\frac{1}{e}\right)$[/tex]

[tex]$\theta = \cos^{-1}\left(\frac{55000(1-(0.818)^2)}{(1000+6378)}-\frac{11}{9}\right)$[/tex]

[tex]$\theta = \cos^{-1}\left(\frac{55000(0.33)}{(7378)}-\frac{11}{9}\right)$[/tex]

[tex]$\theta = \cos^{-1}\left(2.4-1.2\right)$[/tex]

[tex]$\theta = \cos^{-1}\left(1.2\right)$[/tex]

θ = 1.002°

f).Calculating the angular momentum

[tex]$r_p=\frac{h^2}{\mu(1+e)}$[/tex]

or [tex]$h=\sqrt{r_p \mu(1+e)}$[/tex]

Now calculate the radial velocity

[tex]$v_r=\frac{\mu}{h} e \sin \theta$[/tex]

Substituting for h,

[tex]$v_r=\frac{\mu}{h}e \sin \theta$[/tex]

[tex]$v_r=\frac{e\mu \sin \theta}{\sqrt{r_p \mu(1+e)}}$[/tex]

[tex]$v_r=\frac{\frac{9}{11}\sqrt{398600} \sin 20}{\sqrt{10,000 (1+0.818)}}$[/tex]

[tex]$v_r= 1.30 \ km/s$[/tex]

Now calculating the azimuthal velocity

[tex]$v_{\perp}=\frac{\mu}{h}(1+e \cos \theta)$[/tex]

[tex]$v_{\perp}=\frac{\mu (1+e \cos \theta)}{\sqrt{r_p \mu(1+e)}}$[/tex]

[tex]$v_{\perp}=\frac{\sqrt{398600} (1+0.818 \cos 20)}{\sqrt{10000(1+0.818)}}$[/tex]

[tex]$v_{\perp}=7.58 \ km/s$[/tex]

g). Velocity at perigee

[tex]$v_p=\frac{h}{r_p}$[/tex]

[tex]$v_p=\frac{\sqrt{r_p \mu (1+e)}}{r_p}$[/tex]

[tex]$v_p=\frac{\sqrt{10000 (398600) (1+0.818)}}{10000}$[/tex]

[tex]$v_p=8.52 \ km/s$[/tex]

Now calculate the velocity of the apogee

[tex]$v_a=\frac{h}{r_a}$[/tex]

[tex]$v_a=\frac{\sqrt{r_p \mu (1+e)}}{r_a}$[/tex]

[tex]$v_p=\frac{\sqrt{10000 (398600) (1+0.818)}}{100000}$[/tex]

[tex]$v_a= 0.85 \ km/s$[/tex]

ACCESS MORE
EDU ACCESS