Answer:
Following are the solution to this question:
Explanation:
Given value:
[tex]m_s= 4.00 \times 10^{-2} \ kg \\\\L_v=2256 \times 10^{3} \ \frac{J}{kg}\\\\m_w= 0.2 \ kg\\\\\Delta T= 50^{\circ}[/tex]
In point A:
[tex]Q_{Steam}=m_s \ L_v[/tex]
[tex]=0.04 \times 2256 \times 10^{3}\\\\=9.02 \times 10^4 \ J[/tex]
[tex]Q_{water}= m_w \ c_w \ \Delta T\\\\[/tex]
[tex]=0.2 \times 4190 \times 50\\\\=4.19 \times 10^4 \ J[/tex]
[tex]Q_{steam}> Q_{water}[/tex], that's why the final temperature is [tex]= 100^{\circ}[/tex]
In point B:
[tex]\to \Delta m_s L_v=m_w\ c_w \Delta T\\\\\to \Delta m_s \times 2256\times 10^3= 0.2 \times 4190 \times 50\\\\\to \Delta m_s= 1.86 \times 10^{-2} \ kg\\\\\to m_s = 2.14 \times 10^{-2} \ kg\\\\\to liquid \ left = 0.2+ 2.14 \times 10^{-2} = 2.34 \times 10^{-2} \\[/tex]