Respuesta :

Answer:

The ball will reach a maximum height of 39.993 meters after 1.428 seconds.

Step-by-step explanation:

Let suppose that no non-conservative forces acts on the ball during its motion, then we can determine the maximum height reached by the Principle of Energy Conservation, which states that:

[tex]K_{1}+U_{g,1} = K_{2}+U_{g,2}[/tex] (1)

Where:

[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Initial and final translational kinetic energies, measured in joules.

[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Initial and final gravitational potential energies, measured in joules.

By definition of translational kinetic energy and gravitational potential energy we expand and simplify the expression above:

[tex]\frac{1}{2}\cdot m\cdot v_{2}^{2}+m\cdot g\cdot y_{2}= \frac{1}{2}\cdot m\cdot v_{1}^{2}+m\cdot g\cdot y_{1}[/tex] (2)

Where:

[tex]m[/tex] - Mass of the ball, measured in kilograms.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Initial and final speed of the ball, measured in meters per second.

[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final heights of the ball, measured in meters.

The final height of the ball is determined by the following formula:

[tex]v_{2}^{2}+2\cdot g\cdot y_{2} = v_{1}^{2}+2\cdot g\cdot y_{1}[/tex]

[tex]v_{1}^{2}-v_{2}^{2}+2\cdot g \cdot y_{1}=2\cdot g\cdot y_{2}[/tex]

[tex]y_{2} = y_{1}+\frac{v_{1}^{2}-v_{2}^{2}}{2\cdot g}[/tex] (3)

If we know that [tex]y_{1} = 30\,m[/tex], [tex]v_{1} = 14\,\frac{m}{s}[/tex], [tex]v_{2} = 0\,\frac{m}{s}[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], the maximum height that the ball will reach is:

[tex]y_{2} = 30\,m + \frac{\left(14\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]y_{2} = 39.993\,m[/tex]

The ball will reach a maximum height of 39.993 meters.

Given the absence of non-conservative forces, the ball exhibits a free fall. The time needed for the ball to reach its maximum height is computed from the following kinematic formula:

[tex]t = \frac{v_{2}-v_{1}}{-g}[/tex] (4)

If we know that [tex]v_{1} = 14\,\frac{m}{s}[/tex], [tex]v_{2} = 0\,\frac{m}{s}[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then:

[tex]t = \frac{0\,\frac{m}{s}-14\,\frac{m}{s} }{-9.807\,\frac{m}{s^{2}} }[/tex]

[tex]t = 1.428\,s[/tex]

The ball will take 1.428 seconds to reach its maximum height.

RELAXING NOICE
Relax