A 21.0 kg shopping cart is moving with a velocity of 6.0 m/s. It strikes a 11.0 kg box that is initially at rest. They stick together and continue moving at a new velocity. Assume that friction is negligible. What was the momentum of the shopping cart before the collision? a) 66.0 kg-m/s b) 0 kg.m/s c) 126 kg.m/s d) 378 kg.m/s What was the momentum of the box before the collision? a) 66.0 kg.m/s b) 0 kg.m/s c) 378 kg-m/s d) 126 kg-m/s What is the velocity of the combined shopping cart-box wreckage after the collision? a) 6.0 m/s b) 3.9 m/s c) 0 m/s d) 11.5 m/s

Respuesta :

Answer:

a) 126 kgm/s

b) 0 kgm/s

c) 3.9 m/s

Explanation:

To solve this question, we will use the law of conservation of momentum.

Momentum before collision = momentum after collision

m1v1 + m2v2 = (m1 + m2)v, where

m1 = mass of the shopping cart, 21 kg

m2 = mass of the box, 11 kg

v1 = initial velocity of the shopping cart, 6 m/s

v2 = initial velocity of the box, 0 m/s

v = final velocity of the box+cart

a)

Momentum of the shopping cart before collision = P

P = mv

P = 21 * 6

P = 126 kgm/s = c

b)

Momentum of the box before collision

Like in question a above, the momentum of the box is P

P = mv

P = 11 * 0

P = 0 kgm/s = b

c)

Velocity of the combined shopping cart wreckage after collision is

m1v1 + m2v2 = (m1 + m2)v

(21 * 6) + (11 * 0) = (21 + 11)v

126 + 0 = 32v

32v = 126

v = 126/32

v = 3.9375 m/s, on approximating to 1 decimal place, we have 3.9 m/s and option b as the answer.

Please vote brainliest

ACCESS MORE
EDU ACCESS