Answer:
The equation of the line is:
[tex]y=-x+5[/tex]
Step-by-step explanation:
Given the points
Finding the slope between the points
[tex]\left(x_1,\:y_1\right)=\left(-3,\:8\right),\:\left(x_2,\:y_2\right)=\left(4,\:1\right)[/tex]
[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{1-8}{4-\left(-3\right)}[/tex]
[tex]m=-1[/tex]
Using the point-slope form of the line equation
[tex]y-y_1=m\left(x-x_1\right)[/tex]
where m is the slope
substituting the values m = -1 and the point (-3, 8)
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-8=-1\cdot \left(x-\left(-3\right)\right)[/tex]
[tex]y-8=-\left(x+3\right)[/tex]
Add 8 to both sides
[tex]y-8+8=-\left(x+3\right)+8[/tex]
[tex]y=-x+5[/tex]
Therefore, the equation of the line is:
[tex]y=-x+5[/tex]