A reaction vessel is charged with 0.50 atm of A and 0.030 atm of B. Once the reaction reaches equilibrium, what is the equilibrium partial pressure of B? Kp for this reaction is 67.2A (g) ⇌ 2 B (g)

Respuesta :

Answer:

1.000 atm

Explanation:

Step 1: Write the reversible reaction

A(g) ⇌ 2 B(g)

Step 2: Calculate the reaction quotient

Q = [B]²/[A]

Q = 0.030²/0.50

Q = 0.0018

since Q < Kp, the reaction will proceed to the right

Step 3: Make an ICE chart

       A(g) ⇌ 2 B(g)

I      0.50      0.030

C       -x          +2x

E    0.50-x    0.030+2x

Step 4: Find the value of "x"

We will use the definition of the pressure equilibrium constant.

Kp = 67.2 = [B]²/[A] = (0.030+2x)²/0.50-x

33.6 - 67.2x = 0.0009 + 0.12x + 4x²

4x² + 67.32x -33.5991 = 0

We solve this quadratic equation and we get x=0.485112  and x=−17.3151 (neglected).

Step 5: Find the partial pressure of B at equilibrium

pB = 0.030+2x = 0.030+2(0.485112) = 1.000 atm

The equilibrium partial pressure of B would be:

[tex]1.000 atm[/tex]

Reversible Reaction

Given that,

Reaction

[tex]A(g)[/tex] ⇄ [tex]2 B(g)[/tex]

Charge on the reaction vessel [tex]= 0.50 atm[/tex] of A

[tex]0.030 atm[/tex] of B

To find,

Reaction quotient first

[tex]= B^2/A\\= (0.030)^2/0.50\\= 0.0018[/tex]

This shows that the reaction quotient is greater than Kp.

Through the reaction [tex]A(g)[/tex] ⇄ [tex]2 B(g)[/tex], ICE can be drawn

I      [tex]0.50[/tex]      [tex]0.030[/tex]

C    [tex]-x[/tex]        [tex]+2x[/tex]

E    [tex]0.50-x[/tex]   [tex]0.030+2x[/tex]

Now,

We will determine the value of [tex]x[/tex],

Kp [tex]= 67.2[/tex]

[tex]= [B]^2/[A][/tex]

[tex]= (0.030+2x)^2/0.50-x[/tex]

⇒ [tex]33.6 - 67.2x[/tex] [tex]= 0.0009 + 0.12x + 4x^2[/tex]

⇒ [tex]4x^2 + 67.32x -33.5991 = 0[/tex]

∵ [tex]x = -17.3151[/tex]

Therefore, Equilibrium Partial Pressure

[tex]= 0.030+2x[/tex]

[tex]= 0.030+2(0.485112)[/tex]

= [tex]1.000[/tex] atm

Learn more about "Partial Pressure" here:

brainly.com/question/14281129

ACCESS MORE
EDU ACCESS