Respuesta :
Answer:
1.000 atm
Explanation:
Step 1: Write the reversible reaction
A(g) ⇌ 2 B(g)
Step 2: Calculate the reaction quotient
Q = [B]²/[A]
Q = 0.030²/0.50
Q = 0.0018
since Q < Kp, the reaction will proceed to the right
Step 3: Make an ICE chart
A(g) ⇌ 2 B(g)
I 0.50 0.030
C -x +2x
E 0.50-x 0.030+2x
Step 4: Find the value of "x"
We will use the definition of the pressure equilibrium constant.
Kp = 67.2 = [B]²/[A] = (0.030+2x)²/0.50-x
33.6 - 67.2x = 0.0009 + 0.12x + 4x²
4x² + 67.32x -33.5991 = 0
We solve this quadratic equation and we get x=0.485112 and x=−17.3151 (neglected).
Step 5: Find the partial pressure of B at equilibrium
pB = 0.030+2x = 0.030+2(0.485112) = 1.000 atm
The equilibrium partial pressure of B would be:
[tex]1.000 atm[/tex]
Reversible Reaction
Given that,
Reaction
[tex]A(g)[/tex] ⇄ [tex]2 B(g)[/tex]
Charge on the reaction vessel [tex]= 0.50 atm[/tex] of A
[tex]0.030 atm[/tex] of B
To find,
Reaction quotient first
[tex]= B^2/A\\= (0.030)^2/0.50\\= 0.0018[/tex]
This shows that the reaction quotient is greater than Kp.
Through the reaction [tex]A(g)[/tex] ⇄ [tex]2 B(g)[/tex], ICE can be drawn
I [tex]0.50[/tex] [tex]0.030[/tex]
C [tex]-x[/tex] [tex]+2x[/tex]
E [tex]0.50-x[/tex] [tex]0.030+2x[/tex]
Now,
We will determine the value of [tex]x[/tex],
Kp [tex]= 67.2[/tex]
[tex]= [B]^2/[A][/tex]
[tex]= (0.030+2x)^2/0.50-x[/tex]
⇒ [tex]33.6 - 67.2x[/tex] [tex]= 0.0009 + 0.12x + 4x^2[/tex]
⇒ [tex]4x^2 + 67.32x -33.5991 = 0[/tex]
∵ [tex]x = -17.3151[/tex]
Therefore, Equilibrium Partial Pressure
[tex]= 0.030+2x[/tex]
[tex]= 0.030+2(0.485112)[/tex]
= [tex]1.000[/tex] atm
Learn more about "Partial Pressure" here:
brainly.com/question/14281129