Respuesta :
Answer:
a) 2211.6812281 rad/min
b) 352 rpm
Step-by-step explanation:
A bicycle with 24-inch diameter wheels is traveling at 16 mi/h. Find the angular speed of the wheels in radians per minute. ___ radians per minute
How many revolutions per minute do the wheels make? (Round your answer to three decimal places.) ___ revolutions per minute
truck with 24-in.-diameter wheels is traveling at 16 mi/h.
---------
1 mile per hour = 88 feet per minute
16 mi/hr = 1408ft/minute
----------
Each revolution = pi*d feet = 4pi feet
(b) How many revolutions per minute do the wheels make?
rev/min
-------------
Each revolution = pi*d feet = 4pi feet
rpm = 1408 ft/min / 4pi feet
=~ 352 rpm
---------------
(a) Find the angular speed of the wheels in rad/min.
rad/min
-------------
rad/min = rpm*2*pi
= 352 rpm × 2× π
= 2211.6812281 rad/min
So, the wheels make [tex]224.20 \ rev/min[/tex].
Angular Sped:
Angular speed measures how fast the central angle of a rotating body changes with respect to time. It is expressed as,
[tex]\omega=\frac{\theta}{t}[/tex]
Given that:
Diameter[tex]=24 \ in[/tex]
Radius[tex]=12 \ in[/tex]
First, we have to find the angular speed([tex]\omega[/tex]):
We use the formula,
[tex]v=\omega r[/tex]
Substituting,
[tex]16 \ mi/hr=\omega \times 12 \ in[/tex] ([tex]\therefore[/tex] [tex]1mile=63360inches, \ and \ 1hour=60min[/tex])
[tex]=\frac{16 \ mi\times \left ( 63360 \ in/mi \right )}{\left ( 1 \ hr\times 60 \ min/hr \right )}[/tex]
[tex]=\omega \times 12 \ in[/tex]
[tex]\Rightarrow 15840 \ in/min=\omega \times 12 \ in[/tex]
[tex]\omega =16896/12\\w=1408 \ rad/min[/tex]
Now, we have to find rev/min:
([tex]\therefore \ 1 \ revolution=2\pi[/tex])
Thus,
[tex]1408 \ rad/min\times1 \ rev/2\pi \ rad=224.20 \ rev/min[/tex]..
Learn more about the topic Angular Speed: https://brainly.com/question/25648667
