A bicycle with 24-inch diameter wheels is traveling at 16 mi/h. Find the angular speed of the wheels in radians per minute. ___ radians per minute
How many revolutions per minute do the wheels make? (Round your answer to three decimal places.) ___ revolutions per minute

Respuesta :

Answer:

a) 2211.6812281 rad/min

b) 352 rpm

Step-by-step explanation:

A bicycle with 24-inch diameter wheels is traveling at 16 mi/h. Find the angular speed of the wheels in radians per minute. ___ radians per minute

How many revolutions per minute do the wheels make? (Round your answer to three decimal places.) ___ revolutions per minute

truck with 24-in.-diameter wheels is traveling at 16 mi/h.

---------

1 mile per hour = 88 feet per minute

16 mi/hr = 1408ft/minute

----------

Each revolution = pi*d feet = 4pi feet

(b) How many revolutions per minute do the wheels make?

rev/min

-------------

Each revolution = pi*d feet = 4pi feet

rpm = 1408 ft/min / 4pi feet

=~ 352 rpm

---------------

(a) Find the angular speed of the wheels in rad/min.

rad/min

-------------

rad/min = rpm*2*pi

= 352 rpm × 2× π

= 2211.6812281 rad/min

So, the wheels make [tex]224.20 \ rev/min[/tex].

Angular Sped:

Angular speed measures how fast the central angle of a rotating body changes with respect to time. It is expressed as,

[tex]\omega=\frac{\theta}{t}[/tex]

Given that:

Diameter[tex]=24 \ in[/tex]

Radius[tex]=12 \ in[/tex]

First, we have to find the angular speed([tex]\omega[/tex]):

We use the formula,

[tex]v=\omega r[/tex]

Substituting,

[tex]16 \ mi/hr=\omega \times 12 \ in[/tex]   ([tex]\therefore[/tex] [tex]1mile=63360inches, \ and \ 1hour=60min[/tex])

[tex]=\frac{16 \ mi\times \left ( 63360 \ in/mi \right )}{\left ( 1 \ hr\times 60 \ min/hr \right )}[/tex]

[tex]=\omega \times 12 \ in[/tex]

[tex]\Rightarrow 15840 \ in/min=\omega \times 12 \ in[/tex]

[tex]\omega =16896/12\\w=1408 \ rad/min[/tex]

Now, we have to find rev/min:

([tex]\therefore \ 1 \ revolution=2\pi[/tex])

Thus,

[tex]1408 \ rad/min\times1 \ rev/2\pi \ rad=224.20 \ rev/min[/tex]..

Learn more about the topic Angular Speed: https://brainly.com/question/25648667

RELAXING NOICE
Relax