Respuesta :
Answer:
Approximately [tex]22\;\rm g[/tex].
Explanation:
Look up the relative atomic mass data of carbon and oxygen on a modern periodic table:
- [tex]\rm C[/tex]: [tex]12.011[/tex].
- [tex]\rm O[/tex]: [tex]15.999[/tex].
Calculate the formula mass of [tex]\rm O_2[/tex] and [tex]\rm CO_2[/tex]:
[tex]M(\rm O_2) = 2 \times 15.999 = 31.998\; \rm g \cdot mol^{-1}[/tex].
[tex]M(\rm CO_2) = 12.011 + 2 \times 15.999 = 44.009 \; \rm g \cdot mol^{-1}[/tex].
The question suggests that [tex]20\; \rm g - 4\; \rm g = 16\; \rm g[/tex] of [tex]\rm O_2[/tex] took part in this reaction. Calculate the number of moles of molecules in that [tex]16\; \rm g[/tex] of [tex]\rm O_2\,[/tex]:
[tex]\displaystyle n(\mathrm{O_2}) = \frac{m(\mathrm{O_2})}{M(\mathrm{O_2})} = \frac{16\; \rm g}{31.998\; \rm g \cdot mol^{-1}} \approx 0.500\; \rm mol[/tex].
Since [tex]\rm O_2[/tex] is in excess, it would react with [tex]\rm C[/tex] at a one-to-one ratio to produce [tex]\rm CO_2[/tex]:
[tex]\rm C + O_2 \to CO_2[/tex].
Notice the ratio between the coefficient of [tex]\rm O_2\![/tex] and [tex]\rm CO_2[/tex]: [tex]\displaystyle\frac{n(\mathrm{CO_2})}{n(\mathrm{O_2})} = \frac{1}{1}[/tex]. For each mole of [tex]\rm O_2[/tex] that is consumed, one mole of [tex]\rm CO_2\![/tex] will be produced.
The question implies that [tex]16\; \rm g[/tex], which is approximately [tex]0.500\; \rm mol[/tex], of [tex]\rm O_2[/tex] was consumed in this reaction. Accordingly, [tex]0.500\; \rm mol\![/tex] of [tex]\rm CO_2[/tex] will be produced.
Calculate the mass of that [tex]0.500\; \rm mol\![/tex] of [tex]\rm CO_2[/tex]:
[tex]m(\mathrm{CO_2}) = n(\mathrm{CO_2})\cdot M(\mathrm{CO_2}) \approx 22\; \rm g[/tex].