Answer:
Question a)
[tex]9^{3x+4}=27^{4x+3}[/tex]
[tex]x=-0.166[/tex]
Question b)
[tex]4^{3x}=2^{x+1}[/tex]
[tex]x=0.2[/tex]
Step-by-step explanation:
Question a)
Given the expression
[tex]9^{3x+4}=27^{4x+3}[/tex]
Taking log on both sides
[tex]log\left(9^{3x+4}\right)=log\left(27^{4x+3}\right)[/tex]
[tex]\left(3x+4\right)\cdot \left(log\left(9\right)\right)\:=\left(4x+3\right)\cdot \left(log\left(27\right)\right)[/tex]
[tex]3x+4=\left(\frac{log\left(27\right)}{log\left(9\right)}\right)\cdot \left(4x+3\right)[/tex]
[tex]3x+4=1.5\times \left(4x+3\right)[/tex]
[tex]3x+4=6x+4.5[/tex]
[tex]3x=6x+0.5[/tex]
[tex]\frac{-3x}{-3}=\frac{0.5}{-3}[/tex]
[tex]x=-0.166[/tex]
Therefore, the value of x:
[tex]x=-0.166[/tex]
Question b)
Similarly, we can solve the 'b' expression
Given the expression
[tex]4^{3x}=2^{x+1}[/tex]
Taking log on both sides
[tex]log\left(4^{3x}\right)=log\left(2^{x+1}\right)[/tex]
[tex]3x\cdot \left(log\left(4\right)\right)=\left(x+1\right)\cdot \left(log\left(2\right)\right)[/tex]
[tex]3x=\left(\frac{log\left(2\right)}{log\left(4\right)}\right)\cdot \left(x+1\right)[/tex]
[tex]3x=0.5\times \left(x+1\right)[/tex]
[tex]3x=0.5x+0.5[/tex]
[tex]2.5x=0.5[/tex]
Divide both sides by 2.5
[tex]\frac{2.5x}{2.5}=\frac{0.5}{2.5}[/tex]
[tex]x=0.2[/tex]
Therefore, the value of x = 0.2