Respuesta :

Answer:

Question a)

[tex]9^{3x+4}=27^{4x+3}[/tex]

[tex]x=-0.166[/tex]

Question b)

[tex]4^{3x}=2^{x+1}[/tex]

[tex]x=0.2[/tex]

Step-by-step explanation:

Question a)

Given the expression

[tex]9^{3x+4}=27^{4x+3}[/tex]

Taking log on both sides

[tex]log\left(9^{3x+4}\right)=log\left(27^{4x+3}\right)[/tex]

[tex]\left(3x+4\right)\cdot \left(log\left(9\right)\right)\:=\left(4x+3\right)\cdot \left(log\left(27\right)\right)[/tex]

[tex]3x+4=\left(\frac{log\left(27\right)}{log\left(9\right)}\right)\cdot \left(4x+3\right)[/tex]

[tex]3x+4=1.5\times \left(4x+3\right)[/tex]

[tex]3x+4=6x+4.5[/tex]

[tex]3x=6x+0.5[/tex]

[tex]\frac{-3x}{-3}=\frac{0.5}{-3}[/tex]

[tex]x=-0.166[/tex]

Therefore, the value of x:

[tex]x=-0.166[/tex]

Question b)

Similarly, we can solve the 'b' expression

Given the expression

[tex]4^{3x}=2^{x+1}[/tex]

Taking log on both sides

[tex]log\left(4^{3x}\right)=log\left(2^{x+1}\right)[/tex]

[tex]3x\cdot \left(log\left(4\right)\right)=\left(x+1\right)\cdot \left(log\left(2\right)\right)[/tex]

[tex]3x=\left(\frac{log\left(2\right)}{log\left(4\right)}\right)\cdot \left(x+1\right)[/tex]

[tex]3x=0.5\times \left(x+1\right)[/tex]

[tex]3x=0.5x+0.5[/tex]

[tex]2.5x=0.5[/tex]

Divide both sides by 2.5

[tex]\frac{2.5x}{2.5}=\frac{0.5}{2.5}[/tex]

[tex]x=0.2[/tex]

Therefore, the value of x = 0.2

ACCESS MORE
EDU ACCESS
Universidad de Mexico