Answer:
The resultant displacement of the airplane in 4 hours is 212.8 km.
Explanation:
The components of the airplane's velocity and wind's velocity are:
Airplane:
[tex] v_{a_{x}} = v_{a}cos(45) = 70 km/h*cos(45) = 49.50 km/h [/tex]
[tex] v_{a_{y}} = v_{a}sin(45) = 70 km/hsin(45) = 49.50 km/h [/tex]
Wind:
[tex] v_{w_{x}} = 0 [/tex]
[tex] v_{w_{y}} = v_{w} = -30 km/h [/tex]
Now, to know the new velocity of the airplane we to find the result vector:
[tex] v_{x} = v_{a_{x}} + v_{w_{x}} = 49.50 km/h + 0 = 49.50 km/h [/tex]
[tex]v_{y} = v_{a_{y}} + v_{w_{y}} = 49.50 km/h - 30 km/h = 19.50 km/h[/tex]
Now, the magnitude of the new speed of the airplane is:
[tex] v_{a} = \sqrt{v_{x}^{2} + v_{y}^{2}} = \sqrt{(49.50 km/h)^{2} + (19.50 km/h)^{2}} = 53.20 km/h [/tex]
Finally, after 4 hours the resultant displacement of the airplane is:
[tex] x = v*t = 53.20 km/h*4 h = 212.8 km [/tex]
Therefore, the resultant displacement of the airplane in 4 hours is 212.8 km.
I hope it helps you!