Respuesta :

Answer:

  • The graph of the function is attached below.
  • The x-intercepts will be: (2, 0), (-2, 0)
  • The y-intercept will be: (-20, 0)

Explanation:

Given the function

[tex]f\left(x\right)\:=\:5x^2-\:20[/tex]

As we know that the x-intercept(s) can be obtained by setting the value y=0

so

[tex]y=\:5x^2-\:20[/tex]

switching sides

[tex]5x^2-20=0[/tex]

Add 20 to both sides

[tex]5x^2-20+20=0+20[/tex]

[tex]5x^2=20[/tex]

Dividing both sides by 5

[tex]\frac{5x^2}{5}=\frac{20}{5}[/tex]

[tex]x^2=4[/tex]

[tex]\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}[/tex]

[tex]x=\sqrt{4},\:x=-\sqrt{4}[/tex]

[tex]x=2,\:x=-2[/tex]

so the x-intercepts will be: (2, 0), (-2, 0)

we also know that the y-intercept(s) can obtained by setting the value x=0

so

[tex]y=\:5(0)^2-\:20[/tex]

[tex]y=0-20[/tex]

[tex]y=-20[/tex]

so the y-intercept will be: (-20, 0)

From the attached figure, all the intercepts are labeled.

Ver imagen absor201
RELAXING NOICE
Relax