Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
[tex]p_{S,1}+p_{B,1} = p_{S,2}+p_{B,2}[/tex] (1)
Where:
[tex]p_{S,1}[/tex], [tex]p_{S,2}[/tex] - Initial and final momemtums of the small object, measured in kilogram-meters per second.
[tex]p_{B,1}[/tex], [tex]p_{B,2}[/tex] - Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that [tex]p_{S,1} = 7\,\frac{kg\cdot m}{s}[/tex], [tex]p_{B,1} = 0\,\frac{kg\cdot m}{s}[/tex] and [tex]p_{S, 2} = 4\,\frac{kg\cdot m}{s}[/tex], then the final momentum of the big object is:
[tex]7\,\frac{kg\cdot m}{s} + 0\,\frac{kg\cdot m}{s} = 4\,\frac{kg\cdot m}{s}+p_{B,2}[/tex]
[tex]p_{B,2} = 3\,\frac{kg\cdot m}{s}[/tex]
The magnitude of the large object's momentum change is:
[tex]p_{B,2}-p_{B,1} = 3\,\frac{kg\cdot m}{s}-0\,\frac{kg\cdot m}{s}[/tex]
[tex]p_{B,2}-p_{B,1} = 3\,\frac{kg\cdot m}{s}[/tex]
The magnitude of the large object's momentum change is 3 kilogram-meters per second.