Simplify the given expression using only positive exponents. Then complete the statements that follow. [(X^2y^3)^-1/(x^-2y^2z)^2]^2
The exponent on x is___
The exponent on y is___
The exponent on a is____

Respuesta :

Answer:

As

[tex]\:\left(\frac{\left(x^2y^3\right)^{-1}}{\left(x^{-2}y^2z\right)^2}\right)^2=x^4y^{-14}z^{-4}[/tex]

  • The exponent on x is 4
  • The exponent on y is -14
  • The exponent on z is -4

Step-by-step explanation:

Given the expression

[tex]\left[\frac{\left(x^2y^3\right)^{-1}}{\left(x^{-2}y^2z\right)^2}\right]^2[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}[/tex]

[tex]\left(\frac{\left(x^2y^3\right)^{-1}}{\left(x^{-2}y^2z\right)^2}\right)^2=\frac{\left(\left(x^2y^3\right)^{-1}\right)^2}{\left(\left(x^{-2}y^2z\right)^2\right)^2}[/tex]

                      [tex]=\frac{\left(\left(x^2y^3\right)^{-1}\right)^2}{\left(\left(x^{-2}y^2z\right)^2\right)^2}[/tex]

as

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-1}=\frac{1}{a}[/tex]

so the expression becomes

                       [tex]=\frac{\frac{1}{x^4y^6}}{\left(\left(x^{-2}y^2z\right)^2\right)^2}[/tex]       ∵ [tex]\left(x^2y^3\right)^{-1}=\frac{1}{x^2y^3}[/tex]

as

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(a\cdot \:b\right)^n=a^nb^n[/tex]

so the expression becomes

                      [tex]=\frac{\frac{1}{x^4y^6}}{\frac{y^8z^4}{x^8}}[/tex]                    ∵ [tex]\left(x^{-2}y^2z\right)^2=\frac{y^4z^2}{x^4}[/tex]

as

[tex]\mathrm{Divide\:fractions}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}[/tex]

so the expression becomes

                          [tex]=\frac{1\cdot \:x^8}{x^4y^6y^8z^4}[/tex]

                         [tex]=\frac{x^8}{x^4y^6y^8z^4}[/tex]

as

[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]

so the expression becomes

                        [tex]=\frac{x^{8-4}}{y^8y^6z^4}[/tex]

                        [tex]=\frac{x^4}{y^8y^6z^4}[/tex]

                        [tex]=\frac{x^4}{y^{14}z^4}[/tex]

as

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-1}=\frac{1}{a}[/tex]

so the expression becomes

                           [tex]=x^4y^{-14}z^{-4}[/tex]

Therefore,

  • The exponent on x is 4
  • The exponent on y is -14
  • The exponent on z is -4

Answer:

x=4

y=14

z=4

Step-by-step explanation:

ACCESS MORE