Given:
The system of equations is
[tex]3x-2y=7[/tex]
[tex]6x-4y=14[/tex]
To find:
The correct statement for the given system of equations.
Solution:
On comparing the given equations and general form of linear equation, i.e., [tex]ax+by+c=0[/tex], we get
[tex]a_1=3,b_1=-2,c_1=-7[/tex]
[tex]a_2=6,b_2=-4,c_2=-14[/tex]
Here,
[tex]\dfrac{a_1}{a_2}=\dfrac{3}{6}=\dfrac{1}{2}[/tex]
[tex]\dfrac{b_1}{b_2}=\dfrac{-2}{-4}=\dfrac{1}{2}[/tex]
[tex]\dfrac{c_1}{c_2}=\dfrac{-7}{-14}=\dfrac{1}{2}[/tex]
Since, [tex]\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}[/tex], therefore, the two equations are equivalent and the system has infinitely many solutions.
Hence, the correct option is b.