Solution :
Given
[tex]$f(x)=x^3-x-1, x_1=1$[/tex]
[tex]$f'(x)=3x^2-1$[/tex]
Let the initial approximation is [tex]$x_1 =1$[/tex]
So by Newton's method, we get
[tex]$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)},n=1,2,...$[/tex]
[tex]$x_2=x_1-\frac{f(x_1)}{f'(x_1)}=1-\frac{1^3-1-1}{3(1)^2-1}=1.5$[/tex]
[tex]$x_3=1.5-\frac{(1.5)^3-1.5-1}{3(1.5)^2-1}=1.34782608$[/tex]
[tex]$x_4=1.34782608-\frac{(1.34782608)^3-1.34782608-1}{3(1.34782608)^2-1}=1.32520039$[/tex]
[tex]$x_5=1.32520039-\frac{(1.32520039)^3-1.32520039-1}{3(1.32520039)^2-1}=1.32471817$[/tex]
[tex]$x_6=1.32471817-\frac{(1.32471817)^3-1.32471817-1}{3(1.32471817)^2-1}=1.32471795$[/tex]
[tex]$x_5 \approx x_6$[/tex] are identical up to eight decimal places.
The approximate real root is x ≈ 1.32471795
∴ x = 1.32471795