Apply Newton’s method to estimate the solution of x3 − x − 1 = 0 by taking x1 = 1 and finding the least n such that xn and xn + 1 agree to three digits after the decimal point.

Respuesta :

Solution :

Given

[tex]$f(x)=x^3-x-1, x_1=1$[/tex]

[tex]$f'(x)=3x^2-1$[/tex]

Let the initial approximation is [tex]$x_1 =1$[/tex]

So by Newton's method, we get

[tex]$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)},n=1,2,...$[/tex]

[tex]$x_2=x_1-\frac{f(x_1)}{f'(x_1)}=1-\frac{1^3-1-1}{3(1)^2-1}=1.5$[/tex]

[tex]$x_3=1.5-\frac{(1.5)^3-1.5-1}{3(1.5)^2-1}=1.34782608$[/tex]

[tex]$x_4=1.34782608-\frac{(1.34782608)^3-1.34782608-1}{3(1.34782608)^2-1}=1.32520039$[/tex]

[tex]$x_5=1.32520039-\frac{(1.32520039)^3-1.32520039-1}{3(1.32520039)^2-1}=1.32471817$[/tex]

[tex]$x_6=1.32471817-\frac{(1.32471817)^3-1.32471817-1}{3(1.32471817)^2-1}=1.32471795$[/tex]

[tex]$x_5 \approx x_6$[/tex] are identical up to eight decimal places.

The approximate real root is x ≈ 1.32471795

∴ x = 1.32471795

ACCESS MORE