A cylinderical container of height 28cm and diameter 18cm is filled with water. The water is then poured into another container with a rectangular base 27cm and width 11cm. Calculate the depth of the water in the container ( take π=22/7)

Respuesta :

Answer:

h = 24 cm

Step-by-step explanation:

volume of water in the cylinder = volume of water in the rectangular base container

But ,

volume of cylinder = [tex]\pi[/tex][tex]r^{2}[/tex]h

where:  is the radius and h is the height.

volume of cuboid = length x width x height

                             = l x w x h

So that;

[tex]\pi[/tex][tex]r^{2}[/tex]h = l x w x h

But, r = [tex]\frac{diameter}{2}[/tex] = [tex]\frac{18}{2}[/tex] = 9 cm, height of cylinder = 28 cm, length = 27 cm, width = 11 cm, [tex]\pi[/tex] = [tex]\frac{22}{7}[/tex].

Thus,

[tex]\frac{22}{7}[/tex] x [tex](9)^{2}[/tex] x 28 = 27 x 11 x h

[tex]\frac{22}{7}[/tex] x 81 x 28 = 27 x 11 x h

7128 = 297h

h = [tex]\frac{7128}{297}[/tex]

  = 24

h = 24 cm

The depth of the water in the container is 24 cm.  

ACCESS MORE