Answer:
h = 24 cm
Step-by-step explanation:
volume of water in the cylinder = volume of water in the rectangular base container
But ,
volume of cylinder = [tex]\pi[/tex][tex]r^{2}[/tex]h
where: is the radius and h is the height.
volume of cuboid = length x width x height
= l x w x h
So that;
[tex]\pi[/tex][tex]r^{2}[/tex]h = l x w x h
But, r = [tex]\frac{diameter}{2}[/tex] = [tex]\frac{18}{2}[/tex] = 9 cm, height of cylinder = 28 cm, length = 27 cm, width = 11 cm, [tex]\pi[/tex] = [tex]\frac{22}{7}[/tex].
Thus,
[tex]\frac{22}{7}[/tex] x [tex](9)^{2}[/tex] x 28 = 27 x 11 x h
[tex]\frac{22}{7}[/tex] x 81 x 28 = 27 x 11 x h
7128 = 297h
h = [tex]\frac{7128}{297}[/tex]
= 24
h = 24 cm
The depth of the water in the container is 24 cm.