A bullet is fired straight up from a gun with initial velocity 1120 feet per second at an initial height of 8 feet. Use the formula h = − 16 t 2 + v 0 t + 8 to determine how many seconds it will take for the bullet to hit the ground. (That is, when will h = 0 ?) Round your answer to 2 decimal places

Respuesta :

Answer:

70 seconds

Step-by-step explanation:

Given that;

The initial velocity [tex]v_o[/tex] of the bullet fired = 1120 ft/s

Initial height h = 8 feet

The expression to determine how many seconds it takes the bullet to hit the ground is:

[tex]h = -16t^2 +v_ot + 8[/tex]

Thus;

Replacing the value of [tex]v_o[/tex] =  1120 and h = 0 (i.e. when h =0) in the above expression; we have:

[tex]0= -16t^2 +(1120)t + 8[/tex]

[tex]= -16t^2 +(1120)t + (8-0)[/tex]

= -16t² + 1120t + 8

mulitiply through by (-)

= 16t² -1120t - 8

Divide through by 8

= 2t² -  140t - 1

The above expression forms a quadratic equation.

where;

a = 2

b = -140

c = - 1

So, by using the quadratic formula [tex]\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex], we have:

[tex]= \dfrac{-(-140) \pm \sqrt{(-140)^2-4(2)(-1)}}{2(2)}[/tex]

[tex]= \dfrac{140 \pm \sqrt{19600-(-8)}}{4}[/tex]

[tex]= \dfrac{140 \pm \sqrt{19608}}{4}[/tex]

[tex]= \dfrac{140 \pm 140}{4}[/tex]

[tex]=\dfrac{140+ 140}{4} \ \ \ OR \ \ \ \dfrac{140-140}{4}[/tex]

[tex]=\dfrac{280}{4} \ \ \ OR \ \ \ 0[/tex]

= 70

Thus, the time (in seconds) it took the bullet to it the ground = 70 seconds

ACCESS MORE