The critical resolved shear stress for a metal is 35 MPa. Determine the maximum possible yield strength (in MPa) for a single crystal of this metal that is pulled in tension.

Respuesta :

Answer:

The maximum possible yield strength for a single crystal is 70 MPa.

Explanation:

To find the maximum possible yield strength for a single crystal we need to use the following equation:

[tex]\sigma_{y} = \frac{\tau_{CRSS}}{m_{max}}[/tex]

Where:

[tex]m_{max}[/tex] is the maximum value for Schmid factor

[tex]\tau_{CRSS}[/tex] is the critical resolved shear stress = 35 MPa

[tex] \sigma_{y}[/tex] is the yield strength =?    

The Schmid factor is given by:

[tex]m = cos(\phi)cos(\lambda)[/tex]

And its maximum value is obtained when λ = 45° and Φ = 45°, so:

[tex] m = cos(45)cos(45) = 0.5 [/tex]

Finally, the maximum possible yield strength is:

[tex]\sigma_{y} = \frac{\tau_{CRSS}}{m_{max}} = \frac{35 MPa}{0.5} = 70 MPa[/tex]

Therefore, the maximum possible yield strength for a single crystal is 70 MPa.

I hope it helps you!                                                                                  

ACCESS MORE