Answer:
The nth term of the sequence is:
[tex]a_n=\frac{-3n+3}{2}+8[/tex]
Step-by-step explanation:
Given the first 5 terms of the arithmetic sequence
8, 13/2, 5, 7/2, and 2
An arithmetic sequence has a constant difference 'd' and is defined by:
[tex]a_n=a_1+\left(n-1\right)d[/tex]
as the common difference 'd' is:
[tex]d=a_{n+1}-a_n[/tex]
Computing the differences of all the terms
[tex]\frac{13}{2}-8=-\frac{3}{2},\:\quad \:5-\frac{13}{2}=-\frac{3}{2},\:\quad \frac{7}{2}-5=-\frac{3}{2},\:\quad \:2-\frac{7}{2}=-\frac{3}{2}[/tex]
[tex]d=-\frac{3}{2}[/tex]
The first element is:
[tex]a_1=8[/tex]
Therefore, the nth term is computed by:
[tex]a_n=a_1+\left(n-1\right)d[/tex]
[tex]a_n=-\frac{3}{2}\left(n-1\right)+8[/tex]
[tex]a_n=\frac{-3n+3}{2}+8[/tex]
Therefore, nth term of the sequence is:
[tex]a_n=\frac{-3n+3}{2}+8[/tex]