trapezoid ABCD is shown on the graph if the trapezoid is rotated 90 degrees counterclockwise about the origin and the resulting image is translated 6 unit left, what are the coordinates of C

trapezoid ABCD is shown on the graph if the trapezoid is rotated 90 degrees counterclockwise about the origin and the resulting image is translated 6 unit left class=

Respuesta :

Answer:

3

Step-by-step explanation:

The coordinates of C'' is [tex]C''(x,y) = (-7,4)[/tex].

In this question we must rotate every point of the trapezoid ABCD around the origin, which is defined by the following vectorial formula:

[tex]P'(x,y) = O(x,y) + (r_{OP, x}\cdot \cos \theta - r_{OP,y}\cdot \sin \theta, r_{OP,x}\cdot \sin \theta +r_{OP,y}\cdot \cos \theta)[/tex] (1)

Where:

  • [tex]O(x,y)[/tex] - Center of rotation.
  • [tex]r_{OP}[/tex] - Norm of the vector OP.
  • [tex]\theta[/tex] - Angle of rotation, in sexagesimal degrees.

Later, we apply the following translation:

[tex]P''(x,y) = P'(x,y) + (-6,0)[/tex] (2)

If we know that [tex]O(x,y) = (0,0)[/tex], [tex]r_{OC,x} = 4[/tex], [tex]r_{OC,y} = 1[/tex], [tex]\theta = 90^{\circ}[/tex] and [tex]C(x,y) = (4,1)[/tex], the coordinates of C'' are:

[tex]C'(x,y) = (0,0) + (4\cdot \cos 90^{\circ}-1\cdot \sin 90^{\circ}, 4\cdot \sin 90^{\circ}+1\cdot \cos 90^{\circ})[/tex]

[tex]C'(x,y) = (-1, 4)[/tex]

[tex]C''(x,y) = (-1,4) +(-6,0)[/tex]

[tex]C''(x,y) = (-7,4)[/tex]

The coordinates of C'' is [tex]C''(x,y) = (-7,4)[/tex].

We kindly invite to see this question on rigid transformations: https://brainly.com/question/18613109

ACCESS MORE