Respuesta :
There are four quadrants in a coordinate geometry.
The value of cos(A - B) is 84/85
The given parameters are:
[tex]\mathbf{cos(A) = \frac{15}{17}}[/tex]
[tex]\mathbf{cos(B) = \frac{4}{5}}[/tex]
Using trigonometry ratio, we have:
[tex]\mathbf{sin^2(A) + cos^2(A)= 1}[/tex]
Substitute [tex]\mathbf{cos(A) = \frac{15}{17}}[/tex]
[tex]\mathbf{sin^2(A) + (\frac {15}{17})^2 =1}[/tex]
Expand
[tex]\mathbf{sin^2(A) + \frac{225}{289} =1}[/tex]
Collect like terms
[tex]\mathbf{sin^2(A) =1 - \frac{225}{289}}[/tex]
Evaluate fraction
[tex]\mathbf{sin^2(A) =\frac{64}{289}}[/tex]
Take square roots of both sides
[tex]\mathbf{sin(A) =\pm\frac{8}{17}}[/tex]
The angle is in the fourth quadrant.
So, we have:
[tex]\mathbf{sin(A) =-\frac{8}{17}}[/tex]
Also,
Substitute [tex]\mathbf{cos(B) = \frac{4}{5}}[/tex] in [tex]\mathbf{sin^2(B) + cos^2(B)= 1}[/tex]
[tex]\mathbf{sin^2(B) + (\frac 45)^2= 1}[/tex]
[tex]\mathbf{sin^2(B) + \frac{16}{25}= 1}[/tex]
Collect like terms
[tex]\mathbf{sin^2(B) = 1 - \frac{16}{25}}[/tex]
Simplify fraction
[tex]\mathbf{sin^2(B) = \frac{9}{25}}[/tex]
Take square roots
[tex]\mathbf{sin(B) = \pm \frac{3}{5}}[/tex]
The angle is also in fourth quadrant
So, we have:
[tex]\mathbf{sin(B) = - \frac{3}{5}}[/tex]
To calculate cos(A - B), we make use of:
[tex]\mathbf{cos(A - B) = cos(A)cos(B) + sin(A)sin(B)}[/tex]
So, we have:
[tex]\mathbf{cos(A - B) = \frac{15}{17} \times \frac{4}{5} + \frac{-8}{17} \times \frac{-3}{5}}[/tex]
Evaluate
[tex]\mathbf{cos(A - B) = \frac{60}{85} + \frac{24}{85}}[/tex]
Take LCM
[tex]\mathbf{cos(A - B) = \frac{60+24}{85}}[/tex]
[tex]\mathbf{cos(A - B) = \frac{84}{85}}[/tex]
Hence, the value of cos(A - B) is 84/85
Read more about quadrants at:
https://brainly.com/question/7196054