Given:
Vertices of △XYZ are X(-4,6), Y(6,1) and Z(1,1).
To find:
The vertices of ∆X′Y′Z′.
Solution:
According to the question, △XYZ is translated 3 units up to form the image ∆X′Y′Z′, so rule of translation is defined as
[tex](x,y)\to (x,y+3)[/tex]
Now,
[tex]X(-4,6)\to X'(-4,6+3)[/tex]
[tex]X(-4,6)\to X'(-4,9)[/tex]
Similarly,
[tex]Y(6,1)\to Y'(6,1+3)[/tex]
[tex]Y(6,1)\to Y'(6,4)[/tex]
and,
[tex]Z(1,1)\to Z'(1,1+3)[/tex]
[tex]Z(1,1)\to Z'(1,4)[/tex]
Therefore, [tex]X'=(-4,9),Y'=(6,4),Z'=(1,4)[/tex].