Answer:
The correct option is (d). 2.15 meters.
Step-by-step explanation:
According to the given scenario, the approximate length of an alligator at the 67th percentile is as follows:
The length of an alligator is [tex]X \sim N(2,0.35)[/tex] .
Let us assume the [tex]P_{67}[/tex] be the 67th percentile
[tex]P(X <P67) = 0.67\\\\P(Z < \frac{P_{67 - 2 }}{0.35} ) = 0.67\\\\\emptyset (\frac{P_{67 - 2 }}{0.35} ) = 0.67\\\\ (\frac{P_{67 - 2 }}{0.35} ) = \emptyset^{-1 (0.67)\\\\[/tex]
[tex]\frac{P_{67 - 2 }}{0.35} = 0.44\\\\P_{67} = 2.154[/tex]
Hence, the correct option is (d). 2.15 meters