Answer: 0.0386
Step-by-step explanation:
Given: The population of 400 tall women has a mean height[tex](\mu)[/tex] of 179.832 cm and a standard deviation[tex](\sigma)[/tex] of 12.192 cm.
Let X be a random variable that represents the height of woman.
Sample size : n= 50
The probability that the mean for this sample group is above 182.88 will be :
[tex]P(\overline{X}>182.88)\\\\=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{182.88-179.832}{\dfrac{12.192}{\sqrt{50}}})\\\\ =P(Z>1.7678)\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-P(Z<1.7678)\\\\=1-0.9614\ \ \ [\text{By p-value table}]\\\\= 0.0386[/tex]
Hence, Required probability = 0.0386