Answer:
[tex]t=4820 y[/tex]
Step-by-step explanation:
a) The half-life equation is given by:
[tex]t_{1/2}=\frac{ln(2)}{k}[/tex]
b) Using the decay equation we have:
[tex]Q(t)=15e^{-0.0001438t}[/tex]
we need to find t when [tex]Q(t)=\frac{Q_{0}}{2}[/tex]
[tex]7.5=15e^{-0.0001438t}[/tex]
[tex]0.5=e^{-0.0001438t}[/tex]
[tex]ln(0.5)=-0.0001438t[/tex]
[tex]t=\frac{ln(0.5)}{-0.0001438}[/tex]
[tex]t=4820 y[/tex]
Therefore, it will take 4820 years to decay to half the original amount.
I hope it helps you!