Respuesta :
Answer:
A. 5.03 solar mass.
B. the masses of Star A and B are 1.01 solar mass and 4.02 solar mass respectively.
Explanation:
A. The sum of their two masses can be found using Kepler's third law:
[tex]\frac{P^{2}}{a^{3}} = \frac{4\pi^{2}}{G(m_{A} + m_{B})}[/tex]
Where:
P: is the period = 5 y = 1.58x10⁸ s
a: is the separation between the stars = 5 AU = 7.5x10¹¹ m
G: is the gravitational constant = 6.67x10⁻¹¹ m³kg⁻¹s⁻²
[tex]m_{A}[/tex] and [tex]m_{B}[/tex] are the masses of Star A and Star B respectively.
[tex]m_{A} + m_{B} = \frac{4\pi^{2}a^{3}}{P^{2}G} = \frac{4\pi^{2}(5 AU*\frac{1.5\cdot 10^{11} m}{1 AU})^{3}}{(1.58 \cdot 10^{8} s)^{2}6.67 \cdot 10^{-11} m^{3}*kg^{-1}*s^{-2}} = 1.00 \cdot 10^{31} kg*\frac{1 M_{\bigodot}}{1.989\cdot 10^{30} kg} = 5.03 M_{\bigodot}[/tex]
Hence, the sum of their two masses is 5.03 solar mass.
B. Their individual masses can be found using the center of the mass equation:
[tex] a_{B} = (\frac{m_{A}}{m_{A} + m_{B}})a [/tex]
Where:
[tex]a_{B}[/tex] is the distance of Star B from the center of the mass
Since, [tex]a_{A}[/tex] is four times [tex]a_{B}[/tex] and a = 5 AU we have:
[tex] a_{A} = 4a_{B} [/tex]
[tex] a = a_{A} + a_{B} [/tex]
[tex] a_{B} = a - a_{A} = a - 4a_{B} \rightarrow a_{B} = \frac{a}{5} [/tex]
Then, their individual masses are:
[tex]\frac{a}{5} = (\frac{m_{A}}{5.03 M_{\bigodot}})a[/tex]
[tex]m_{A} = \frac{5.03 M_{\bigodot}}{5} = 1.01 M_{\bigodot}[/tex]
Now, the mass of Star B is:
[tex]m_{B} = m_{T} - m_{A} = 5.03 M_{\bigodot} - 1.01 M_{\bigodot} = 4.02 M_{\bigodot}[/tex]
Therefore, the masses of Star A and B are [tex]1.01 M_{\bigodot}[/tex] and [tex]4.02 M_{\bigodot}[/tex] respectively.
I hope it helps you!