Answer:
416
Step-by-step explanation:
Given that:
A previous random sample = 4000
Sample mean = 2250
[tex]\hat p = \dfrac{x}{n}[/tex]
[tex]\hat p = \dfrac{2250}{4000}[/tex]
[tex]\hat p = 0.5625[/tex]
The confidence interval level = 90%
Desired Margin of error E = 0.04
The level of significance at 90% C.I = 1 - 0.90 = 0.10
The critical value [tex]Z_{\alpha/2} = Z_{0.10/2}[/tex]
[tex]\implies Z_{0.05} = 1.645[/tex] ( From the z tables)
[tex]n = \hat p \times (1- \hat p ) \bigg ( \dfrac{z_{0.05}}{E} \bigg)^2[/tex]
[tex]n = 0.5625 \times (1- 0.5625) \bigg ( \dfrac{1.645}{0.04} \bigg)^2[/tex]
[tex]n = 0.5625 \times (0.4375) \bigg ( 41.125 \bigg)^2[/tex]
n = 416.21
Thus, the number of citizens required to be sampled is [tex]\simeq[/tex] 416