Respuesta :
Answer:
[tex]\displaystyle y'=-\frac{9}{2}[/tex]
Step-by-step explanation:
Differentiation
We have a relationship between x and y as follows:
[tex]x^2+y^2=25[/tex]
Both variables depend on time t for t≥0.
Differentiating with respect to time:
[tex](x^2)'+(y^2)'=(25)'[/tex]
Applying the derivative of a power function:
[tex]2xx'+2yy'=0[/tex]
Recall the derivative of a constant is 0.
Dividing by 2:
[tex]xx'+yy'=0[/tex]
Solving for y':
[tex]\displaystyle y'=-\frac{xx'}{y}[/tex]
At some specific time, we have:
x=3, y=4, dx/dt = x' = 6. Substituting:
[tex]\displaystyle y'=-\frac{3\cdot 6}{4}[/tex]
Operating:
[tex]\displaystyle y'=-\frac{18}{4}[/tex]
Simplifying:
[tex]\mathbf{\displaystyle y'=-\frac{9}{2}}[/tex]
The movement of the particle on the circle is its displacement
The value of dy/dt at this time is -9/2
The equation of the circle is given as:
[tex]\mathbf{x^2 + y^2 = 25}[/tex]
Differentiate with respect to time
[tex]\mathbf{2x\times \frac{dx}{dt} + 2y \times \frac{dy}{dt} = 0}[/tex]
Divide through by 2
[tex]\mathbf{x\times \frac{dx}{dt} + y \times \frac{dy}{dt} = 0}[/tex]
At point (3,4);
x =3 and y = 4.
So, we have:
[tex]\mathbf{3 \times \frac{dx}{dt} + 4 \times \frac{dy}{dt} = 0}[/tex]
Also: dx/dt = 6
So, we have:
[tex]\mathbf{3 \times 6 + 4 \times \frac{dy}{dt} = 0}[/tex]
Multiply
[tex]\mathbf{18+ 4 \times \frac{dy}{dt} = 0}[/tex]
Subtract 18 from both sides
[tex]\mathbf{4 \times \frac{dy}{dt} = -18}[/tex]
Divide through by 4
[tex]\mathbf{\frac{dy}{dt} = -\frac{18}4}[/tex]
Simplify
[tex]\mathbf{\frac{dy}{dt} = -\frac{9}2}[/tex]
Hence, the value of dy/dt at this time is -9/2
Read more about movements at:
https://brainly.com/question/19385433