Respuesta :

Step-by-step explanation:

Let:-

[tex]p = {q}^{r}[/tex]be eqn.1

[tex]q = {r}^{p} [/tex]be eqn.2

[tex]r = {p}^{q} [/tex]be eqn.3

Susbstituting the value of p from eqn.1 to eqn.3 ,

[tex]r = {( {q}^{r} )}^{q} \: = {q}^{qr} [/tex]

Substituting the value of q from eqn.2 to eqn.3 ,

[tex]r = ( { {r}^{p} )}^{qr} = ( {r})^{pqr} [/tex]

[tex] = > {r}^{1} = {r}^{pqr} [/tex]

As bases are same in both the sides of this eqn.

[tex] = > pqr = 1[/tex]

We can easily prove the statement that if [tex]p=q^{r}[/tex], [tex]q = r^{p}[/tex] and [tex]r=p^{q}[/tex] , then pqr=1.

What is exponent?

We know that a number's exponent indicates how many times it should be multiplied.

How to solve it?

Given that

[tex]p=q^{r}[/tex]

[tex]q = r^{p}[/tex]

Now, [tex]r=p^{q}[/tex]

i.e. [tex]r=(q^{r})^{q}[/tex]

i.e. [tex]r=(q^{qr})[/tex]

i.e. [tex]r=(r^{p})^{rq}[/tex]

i.e. [tex]r=(r^{pqr})[/tex]

i.e. [tex]\frac{r}{r^{pqr}} =1[/tex]

i.e. [tex]r^{1-pqr} =r^{0}[/tex] [Since [tex]a^{0} = 1[/tex], a is any number]

i.e. 1 - pqr = 0

i.e. pqr = 1

We proved our statement that if [tex]p=q^{r}[/tex], [tex]q = r^{p}[/tex] and [tex]r=p^{q}[/tex], then pqr=1.

Learn more about exponents here -

https://brainly.com/question/16499150

#SPJ2

RELAXING NOICE
Relax