Respuesta :
Step-by-step explanation:
Let:-
[tex]p = {q}^{r}[/tex]be eqn.1
[tex]q = {r}^{p} [/tex]be eqn.2
[tex]r = {p}^{q} [/tex]be eqn.3
Susbstituting the value of p from eqn.1 to eqn.3 ,
[tex]r = {( {q}^{r} )}^{q} \: = {q}^{qr} [/tex]
Substituting the value of q from eqn.2 to eqn.3 ,
[tex]r = ( { {r}^{p} )}^{qr} = ( {r})^{pqr} [/tex]
[tex] = > {r}^{1} = {r}^{pqr} [/tex]
As bases are same in both the sides of this eqn.
[tex] = > pqr = 1[/tex]
We can easily prove the statement that if [tex]p=q^{r}[/tex], [tex]q = r^{p}[/tex] and [tex]r=p^{q}[/tex] , then pqr=1.
What is exponent?
We know that a number's exponent indicates how many times it should be multiplied.
How to solve it?
Given that
[tex]p=q^{r}[/tex]
[tex]q = r^{p}[/tex]
Now, [tex]r=p^{q}[/tex]
i.e. [tex]r=(q^{r})^{q}[/tex]
i.e. [tex]r=(q^{qr})[/tex]
i.e. [tex]r=(r^{p})^{rq}[/tex]
i.e. [tex]r=(r^{pqr})[/tex]
i.e. [tex]\frac{r}{r^{pqr}} =1[/tex]
i.e. [tex]r^{1-pqr} =r^{0}[/tex] [Since [tex]a^{0} = 1[/tex], a is any number]
i.e. 1 - pqr = 0
i.e. pqr = 1
We proved our statement that if [tex]p=q^{r}[/tex], [tex]q = r^{p}[/tex] and [tex]r=p^{q}[/tex], then pqr=1.
Learn more about exponents here -
https://brainly.com/question/16499150
#SPJ2
Otras preguntas
