Respuesta :

Answer:

[tex]\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}[/tex]

[tex]x=\frac{1}{8},\:x=1[/tex]

Step-by-step explanation:

Given the equation

[tex]8x^2-9x=-1\:\:[/tex]

Add 1 to both sides

[tex]8x^2-9x+1=-1+1[/tex]

[tex]8x^2-9x+1=0[/tex]

as

[tex]\left(8x-1\right)\left(x-1\right)=8x^2-9x+1[/tex]

so the equation becomes

[tex]\left(8x-1\right)\left(x-1\right)=0[/tex]

Using the zero factor principle:

[tex]\:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)[/tex]

so

[tex]8x-1=0\quad \mathrm{or}\quad \:x-1=0[/tex]

solving

[tex]8x-1=0[/tex]

[tex]8x=1[/tex]

[tex]\frac{8x}{8}=\frac{1}{8}[/tex]

[tex]x=\frac{1}{8}[/tex]

also solving

[tex]x-1=0[/tex]

[tex]x=1[/tex]

[tex]\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}[/tex]

[tex]x=\frac{1}{8},\:x=1[/tex]

ACCESS MORE