Respuesta :

Answer:

Arranging the terms from least to greatest:

[tex]\frac{3039}{1000}<\frac{3200}{1000}<\frac{3990}{1000}<\frac{8200}{1000}[/tex]

Now actual terms arranged from least to greatest will be:

[tex]3\frac{39}{1000}<3\frac{1}{5} <3\frac{99}{100}<3\frac{52}{10}[/tex]

Step-by-step explanation:

We need to arrange the weights [tex]3\frac{1}{5} ,3\frac{39}{1000},3\frac{99}{100},3\frac{52}{10}[/tex] from least to greatest.

To arrange them in least to greatest we need to convert them into improper fractions and then make their denominators same.

[tex]3\frac{1}{5}=\frac{16}{5} \\3\frac{39}{1000}=\frac{3039}{1000} \\3\frac{99}{100}=\frac{399}{100} \\3\frac{52}{10}=\frac{82}{10}[/tex]

Now, Making their denominator same by taking LCM of 5,1000,100 and 10

The LCM is 1000

Now the fractions will become:

[tex]\frac{16}{5}=\frac{16*200}{5*200}=\frac{3200}{1000}[/tex]

[tex]\frac{399}{100}=\frac{399*10}{100*10}=\frac{3990}{1000}[/tex]

[tex]\frac{82}{10}=\frac{82*100}{10*100}=\frac{8200}{1000}[/tex]

Now we have fractions: [tex]\frac{3200}{1000},\frac{3990}{1000},\frac{8200}{1000},\frac{3039}{1000}[/tex]

Now the smallest term will be one having smallest numerator

Arranging the terms from least to greatest:

[tex]\frac{3039}{1000}<\frac{3200}{1000}<\frac{3990}{1000}<\frac{8200}{1000}[/tex]

Now actual terms arranged from least to greatest will be:

[tex]3\frac{39}{1000}<3\frac{1}{5} <3\frac{99}{100}<3\frac{52}{10}[/tex]

ACCESS MORE