Answer:
Step-by-step explanation:
5) ΔGHJ ≅ ΔXYZ
ΔGHJ is an isosceles triangle. So, GH = JH
GH =JH = 27 ft
a) GJ =XZ
GJ = 18 ft
b) XY = GH
XY = 27 ft
c) ZY = JH
ZY = 27 ft
d) ∠H = ∠Y
∠H = 38
In ΔGHJ,
∠G = ∠J {Isosceles triangle property}
Let ∠G = ∠J = x
∠G + ∠H + ∠J = 180 {angle sum property of triangle}
x + 38 + x = 180
38 +2x = 180
2x = 180 - 38
2x = 142
x = 142/2
x = 71
∠G = ∠J = 71
e) ∠Z = ∠J
∠Z = 71
f) ∠J = 71
9) ΔQRS ≅ ΔMNP
QR = 11 ; QS =15
MP = 2x +1
MP = QS
2x + 1 = 15
2x = 15 - 1
2x = 14
x = 14/2
x = 7
m∠S = 84
m∠R = 32
m∠Q = 17y - 4
In ΔQRS,
m∠Q + m∠R + m∠S = 180 {Angle sum property of triangle}
17y - 4 + 32 + 84 = 180
17y + 112 = 180
17y = 180 - 112
17y = 68
y = 68/17
y = 4