Answer:
The first term is:
Step-by-step explanation:
The arithmetic sequence is defined by
[tex]a_n=a_1+\left(n-1\right)d[/tex]
where
[tex]a_1[/tex] is the first term
[tex]d[/tex] is the common difference
as
the 17th term of an arithmetic sequence is 51.
i.e. [tex]a_{17}=51[/tex]
so
[tex]a_n=a_1+\left(n-1\right)d[/tex]
[tex]a_{17}=a_1+\left(17-1\right)d[/tex]
[tex]51=a_1+\left(17-1\right)7[/tex] ∵ [tex]n = 17[/tex], [tex]a_{17}=51[/tex] , [tex]d=7[/tex]
[tex]a_1+112=51[/tex] ∵ [tex]\left(17-1\right)\cdot \:\:7=112[/tex]
[tex]a_1=-61[/tex]
Therefore, the first term is: