Respuesta :

Answer:

x = 1

Step-by-step explanation:

Using the rules of exponents

[tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]

Note that 9 = 3² and 27 = 3³ , thus

[tex]9^{x-2}[/tex] × [tex]27^{x}[/tex]

= [tex](3^2)^{x-2}[/tex] × [tex](3^3)^{x}[/tex]

= [tex]3^{2x-4}[/tex] × [tex]3^{3x}[/tex]

= [tex]3^{(2x-4+3x)}[/tex]

= [tex]3^{5x-4}[/tex] , then

[tex]3^{5x-4}[/tex] = [tex]3^{1}[/tex]

Since the bases on both sides are equal, equate the exponents

5x - 4 = 1 ( add 4 to both sides )

5x = 5 ( divide both sides by 5 )

x = 1

ACCESS MORE