Answer:
[tex]\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}=\frac{27}{4x^9y^8}[/tex]
Step-by-step explanation:
Given the expression
[tex]\:\:\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}[/tex]
solving the expression
[tex]\:\:\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}=4\cdot \:\frac{\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}[/tex]
[tex]=4\:\frac{27x^3y^{12}}{16x^{12}y^{20}}[/tex]
[tex]=4\cdot \frac{3^3}{2^4x^9y^8}[/tex]
The multiply fractions are defined as
[tex]\:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}[/tex]
so the expression becomes
[tex]=\frac{3^3\cdot \:4}{2^4x^9y^8}[/tex]
[tex]=\frac{3^3\cdot \:2^2}{2^4x^9y^8}[/tex]
[tex]=\frac{3^3}{2^2x^9y^8}[/tex]
Refining
[tex]=\frac{27}{4x^9y^8}[/tex]
Therefore,
[tex]\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}=\frac{27}{4x^9y^8}[/tex]