Respuesta :

Answer:

[tex]\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}=\frac{27}{4x^9y^8}[/tex]

Step-by-step explanation:

Given the expression

[tex]\:\:\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}[/tex]

solving the expression

[tex]\:\:\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}=4\cdot \:\frac{\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}[/tex]

             [tex]=4\:\frac{27x^3y^{12}}{16x^{12}y^{20}}[/tex]

              [tex]=4\cdot \frac{3^3}{2^4x^9y^8}[/tex]

The multiply fractions are defined as

[tex]\:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}[/tex]

so the expression becomes

                [tex]=\frac{3^3\cdot \:4}{2^4x^9y^8}[/tex]

                [tex]=\frac{3^3\cdot \:2^2}{2^4x^9y^8}[/tex]

                [tex]=\frac{3^3}{2^2x^9y^8}[/tex]

Refining

                 [tex]=\frac{27}{4x^9y^8}[/tex]

Therefore,

[tex]\frac{4\left(3xy^4\right)^3}{\left(2x^3y^5\right)^4}=\frac{27}{4x^9y^8}[/tex]            

ACCESS MORE