Answer:
[tex]g\left(x\right)=x^3\:-\:4x^2\:-\:x\:+\:22[/tex] in the factored form will be:
Step-by-step explanation:
Given the function
[tex]g\left(x\right)=x^3\:-\:4x^2\:-\:x\:+\:22[/tex]
Use the rational root theorem.
[tex]a_0=22,\:\quad a_n=1[/tex]
[tex]\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:11,\:22,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1[/tex]
[tex]\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:2,\:11,\:22}{1}[/tex]
[tex]-\frac{2}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+2[/tex]
[tex]=\left(x+2\right)\frac{x^3-4x^2-x+22}{x+2}[/tex]
as
[tex]\frac{x^3-4x^2-x+22}{x+2}=x^2-6x+11[/tex] ∵ [tex]x^3-4x^2-x+22=\left(x+2\right)\left(x^2-6x+11\right)[/tex]
so the expression becomes
[tex]x^3\:-\:4x^2\:-\:x\:+\:22=\left(x+2\right)\left(x^2-6x+11\right)[/tex]
Therefore,
[tex]g\left(x\right)=x^3\:-\:4x^2\:-\:x\:+\:22[/tex] in the factored form will be: