Respuesta :
Answer:
[tex]80.54^{\circ}[/tex]
[tex]0.46\ \text{m/s}[/tex]
Explanation:
m = Mass of initial piece = 1.2 kg
[tex]u_x[/tex] = Velocity of toy in x direction = 0.05 m/s
[tex]u_y[/tex] = Velocity of toy in y direction = 0
[tex]v_{1x}[/tex] = Velocity of fragment 1 in x direction = 0
[tex]v_{1y}[/tex] = Velocity of fragment 1 in y direction = -0.9 m/s
[tex]v_{2x}[/tex] = Velocity of fragment 2 in x direction
[tex]v_{2y}[/tex] = Velocity of fragment 2 in y direction
[tex]m_1[/tex] = Mass of fragment 1 = 0.4 kg
[tex]m_2[/tex] = Mass of fragment 2 = 1.2-0.4 = 0.8 kg
Applying conservation of momentum in x axis
[tex]mu_x=m_1v_{1x}+m_2v_{2x}\\\Rightarrow 1.2\times 0.05=0.4\times 0+0.8\times v_2\cos\theta\\\Rightarrow v_2\cos\theta=\dfrac{1.2\times 0.05}{0.8}\\\Rightarrow v_2\cos\theta=0.075\ \text{m/s}[/tex]
Applying conservation of momentum in y axis
[tex]mu_{y}=m_1v_{1y}+m_2v_{2y}\\\Rightarrow 0=0.4\times -0.9+0.8\times v_{2y}\\\Rightarrow v_{2y}=\dfrac{0.4\times 0.9}{0.8}\\\Rightarrow v_2\sin\theta=0.45\ \text{m/s}[/tex]
From the above two final equations we get
[tex]\dfrac{v_2\sin\theta}{v_2\cos\theta}=\dfrac{0.45}{0.075}\\\Rightarrow \theta=\tan^{-1}\dfrac{0.45}{0.075}\\\Rightarrow \theta=80.54^{\circ}[/tex]
The direction of the fragment 2 is [tex]80.54^{\circ}[/tex]
[tex]v_2=\dfrac{0.075}{\cos\theta}\\\Rightarrow v_2=\dfrac{0.075}{\cos80.54^{\circ}}\\\Rightarrow v_2=0.46\ \text{m/s}[/tex]
The velocity of fragment 2 is [tex]0.46\ \text{m/s}[/tex]
The magnitude and direction of the velocity of fragment 2 is 0.46 m/s at 80.54⁰.
The given parameters;
- mass of the spring, m = 1.2 kg
- speed of the spring, v = 0.05 m/s
- mass of the first fragment, m₁ = 0.4 kg
- initial speed of the first fragment, u₁ = 0.9 m/s
- mass of the second fragment, m₂ = 0.8 kg
Apply the principle of conservation of linear momentum, to determine the speed of the second fragment;
in x-direction:
[tex]mucos\ \theta = m_1 v_1 cos\theta + m_2 v_2cos\theta\\\\1.2 \times 0.05 \times cos (0) = 0 + 0.8v_2cos \theta\\\\v_2cos \theta = \frac{0.06}{0.8} \\\\v_2cos \theta = 0.075 \ m/s[/tex]
In y-direction:
[tex]1.2(0) = -0.4(0.9)+ 0.8(v_2sin\theta)\\\\v_2 sin\theta = \frac{0.36}{0.8} \\\\v_2 sin\theta = 0.45[/tex]
solve the first and second equation together;
[tex]\frac{v_2 sin\theta }{v_2cos \theta} = \frac{0.45}{0.075} \\\\tan\theta = 6 \\\\\theta = tan^{-1}(6)\\\\\theta = 80.54 \ ^0[/tex]
The value of the velocity is calculated as;
[tex]v_2 sin\theta = 0.45\\\\v_2 = \frac{0.45}{sin\theta} \\\\v_2 = \frac{0.45}{sin(80.54)} \\\\v_2 = 0.46 \ m/s[/tex]
Thus, the magnitude and direction of the velocity of fragment 2 is 0.46 m/s at 80.54⁰.
Learn more here:https://brainly.com/question/24424291