Answer:
The pressure inside the cylinder is [tex]8.327\times 10^{-3}[/tex] atmospheres.
The value for R for this problem is 0.082 atmosphere-liters per mol-Kelvin.
Explanation:
Let suppose that helium gas inside the cylinder behaves as an ideal gas, the equation of state for the ideal gas is:
[tex]P\cdot V = n\cdot R_{u}\cdot T[/tex] (1)
Where:
[tex]P[/tex] - Pressure, measured in atmospheres.
[tex]V[/tex] - Volume, measured in liters.
[tex]n[/tex] - Molar quantity, measured in moles.
[tex]T[/tex] - Temperature, measured in Kelvin.
[tex]R_{u}[/tex] - Ideal gas, measured in atmosphere-liters per mole-Kelvin.
If we know that [tex]V = 60\,L[/tex], [tex]n = 0.020\,mol[/tex], [tex]T = 304.65\,K[/tex] and [tex]R_{u} = 0.082\,\frac{atm\cdot L}{mol\cdot K}[/tex], then the pressured inside the cylinder is:
[tex]P = \frac{n\cdot R_{u}\cdot T}{V}[/tex]
[tex]P = \frac{(0.020\,mol)\cdot \left(0.082\,\frac{atm\cdot L}{mol\cdot K}\right)\cdot (304.65\,K) }{60\,L}[/tex]
[tex]P = 8.327\times 10^{-3}\,atm[/tex]
The pressure inside the cylinder is [tex]8.327\times 10^{-3}[/tex] atmospheres.
The value for R for this problem is 0.082 atmosphere-liters per mol-Kelvin.