Consider this right triangle. R 9 55° Q P Enter the length of RQ, to the nearest tenth.

Answer:
RQ = 7.4
Step-by-step explanation:
From the right triangle PQR,
m∠Q = 90°
m∠P = 55°
Hypotenuse PR = 9
By applying sine rule in the given triangle,
Sin(55°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
0.819152 = [tex]\frac{\text{RQ}}{\text{PR}}[/tex]
0.819152 = [tex]\frac{RQ}{9}[/tex]
RQ = 9×0.819152
RQ = 7.37
≈ 7.4