Answer:
[tex]y = -5x - 3[/tex]
Step-by-step explanation:
The data in the question are not properly presented.
See attachment for graph
To determine the graph, first we need to calculate the slope (m)
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where x and y are corresponding values:
When x = -1; y = 2;
This implies [tex](x_1,y_1) = (-1,2)[/tex]
When x = 0; y = -3
This implies [tex](x_2,y_2) = (0,-3)[/tex]
So:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{-3 - 2}{0 - (-1)}[/tex]
[tex]m = \frac{-3 - 2}{0 +1}[/tex]
[tex]m = \frac{-5}{1}[/tex]
[tex]m = -5[/tex]
The equation is then calculated using:
[tex]y - y_1 = m(x-x_1)[/tex]
Where:
[tex]m = -5[/tex]
[tex](x_1,y_1) = (-1,2)[/tex]
[tex]y - 2 = -5(x -(-1))[/tex]
[tex]y - 2 = -5(x +1)[/tex]
[tex]y - 2 = -5x -5[/tex]
Make y the subject
[tex]y = -5x - 5 +2[/tex]
[tex]y = -5x - 3[/tex]
Please note that the graph I attached may/may not be the right graph to your question.
However, if you follow the steps I used in answering this question, you'll get the right answer to your question.