Answer:
The coordinates of the point W is ((5/9)·√65, -20/9)
Step-by-step explanation:
The given parameters are;
The location of point S = (0, 0)
The location of point T = (0, 6)
The location of point U = (12, 0)
The location of point V = (0, 10)
We have;
The length of segment ST = √((6 - 0)² + (0 - 0)²) = 6
The length of segment SU = √((12 - 0)² + (0 - 0)²) = 12
The length of segment TU = √((12 - 0)² + (10 - 0)²) = √(144 + 100) = 2·√(61)
The length of segment TU = 2·√(61)
The length of segment SV = √((10 - 0)² + (0 - 0)²) = 10
Therefore, we have for similar triangles;
SV/SU = SW/ST = UW/TU
Therefore;
SW = ST × SV/SU = 6 × 10/12 = 5
VW = TU × SV/SU = 2·√(61) × 10/12 = (5/3)·√(61)
Where the coordinates of the point W = (a, b), we have;
Length of VW = √((10 - b)² + (0 - a)²) = (5/3)·√(61)
(25/9)·(61) = (10 - b)² + a²
Length of SW = √((0 - b)² + (0 - a)²) = 5
25 = b² + a²
∴ a² = 25 - b²
Substituting the value of a² into the length of segment LW equation, gives;
(25/9)·(61) = (10 - b)² + a² = (10 - b)² + 25 - b²
(25/9)·(61) = (10 - b)² + 25 - b² = 100 - 20·b + b² + 25 - b²
(25/9)·(61) = 125 - 20·b
20·b = 125 - (25/9)·(61)
b = -20/9
a² = 25 - b² = 25 - (-20/9)² = 1625/81
a = √(1625/81) = (5/9)·√65
The coordinates of the point W = ((5/9)·√65, -20/9).