A rectangle has a length of 12 yards less than 3 times its width. If the area of the rectangle is 135 square yards, find the length of the rectangle.

Respuesta :

Answer:

The length is 15 yards

Step-by-step explanation:

Given

Represent the width with W and length with L: So

[tex]Area = 135yd^2[/tex]

[tex]L=3W - 12[/tex]

Required

Determine the length of the rectangle:

Area is calculated as thus:

[tex]Area = L * W[/tex]

Substitute 3W - 12 for L and 135 for Area

[tex]135= (3W - 12) * W[/tex]

[tex]135= 3W^2 - 12W[/tex]

Reorder:

[tex]3W^2 - 12W - 135= 0[/tex]

Divide through by 3

[tex]W^2 - 4W - 45 = 0[/tex]

Expand:

[tex]W^2 - 9W + 5W - 45 = 0[/tex]

[tex]W(W - 9) + 5(W - 9) = 0[/tex]

[tex](W + 5)(W-9) = 0[/tex]

[tex]W + 5 = 0[/tex] or [tex]W - 9 = 0[/tex]

[tex]W = -5[/tex] or [tex]W = 9[/tex]

But width can't be negative

So:

[tex]W = 9[/tex]

Recall that: [tex]L=3W - 12[/tex]

[tex]L = 3 * 9 - 12[/tex]

[tex]L = 15[/tex]

Hence, the length 15 yards

ACCESS MORE