A circular coil of 185 turns and radius 4.50 cm is placed inside and coaxial to a solenoid with 350 turns/m. If the current in the solenoid is represented by the equation I = a(1 − e−bt) where a = 12.5 A and b = 2.10 s−1, determine the magnitude of the induced emf in the coil when t = 1.50 s.

Respuesta :

Answer:

Magnitude of the induced emf is 11.62 V

Explanation:

Given:

No. of turns of the circular coil, N=185

Radius, R=4.50 cm=0.045 m

No. of turns of solenoid per meter(m), n=350

a=12.5 A

b=2.10 [tex]s^{-1}[/tex]

Now,

To determine the emf induced in the coil at t = 1.50 s:

The given equation is:

[tex]I=a(1-e^{-bt})[/tex]

Now,

[tex]B=\mu_{o}nI=\mu_{o}na(1-e^{-bt})[/tex]

[tex]\frac{dB}{dt}=\mu_{o}nabe^{-bt}[/tex]

Now, substituting the respective values:

[tex]\frac{dB}{dt}=-4\pi\times 10^{-7}\times 350\times 12.5\times 2.10e^{-2.10\times 1.50}[/tex]

[tex]\frac{dB}{dt}=0.988\ T/s[/tex]

Now,

[tex]emf=NA\frac{dB}{dt}[/tex]

where,

A=Area=[tex]\pi R^{2}[/tex]

Thus,

[tex]emf=185\times \pi\times (4.50\times 10^{-2})^{2}\times 11.545e^{-3.15}[/tex]

[tex]emf=11.62 V[/tex]

ACCESS MORE