Answer:
Magnitude of the induced emf is 11.62 V
Explanation:
Given:
No. of turns of the circular coil, N=185
Radius, R=4.50 cm=0.045 m
No. of turns of solenoid per meter(m), n=350
a=12.5 A
b=2.10 [tex]s^{-1}[/tex]
Now,
To determine the emf induced in the coil at t = 1.50 s:
The given equation is:
[tex]I=a(1-e^{-bt})[/tex]
Now,
[tex]B=\mu_{o}nI=\mu_{o}na(1-e^{-bt})[/tex]
[tex]\frac{dB}{dt}=\mu_{o}nabe^{-bt}[/tex]
Now, substituting the respective values:
[tex]\frac{dB}{dt}=-4\pi\times 10^{-7}\times 350\times 12.5\times 2.10e^{-2.10\times 1.50}[/tex]
[tex]\frac{dB}{dt}=0.988\ T/s[/tex]
Now,
[tex]emf=NA\frac{dB}{dt}[/tex]
where,
A=Area=[tex]\pi R^{2}[/tex]
Thus,
[tex]emf=185\times \pi\times (4.50\times 10^{-2})^{2}\times 11.545e^{-3.15}[/tex]
[tex]emf=11.62 V[/tex]