Using f(x) =x^2/3-2, determine if each statement below is true or false. Show the work that justifies your answer. The statements are A. F(6)=f(-6) B. F(6)=2 • f(3)

Respuesta :

Answer:

[tex]f(6) = f(-6)[/tex] --- True

[tex]f(6)=2 * f(3)[/tex] --- False

Step-by-step explanation:

Given

[tex]f(x) = \frac{x^2}{3} - 2[/tex]

Solving (a): f(6) = f(-6)

First, we solve for f(6) by substituting 6 for x in [tex]f(x) = \frac{x^2}{3} - 2[/tex]

[tex]f(6) = \frac{6^2}{3} - 2[/tex]

[tex]f(6) = \frac{36}{3} - 2[/tex]

[tex]f(6) = 12 - 2[/tex]

[tex]f(6) = 10[/tex]

Next, we solve for f(-6) by substituting -6 for x in [tex]f(x) = \frac{x^2}{3} - 2[/tex]

[tex]f(-6) = \frac{-6^2}{3} - 2[/tex]

[tex]f(-6) = \frac{36}{3} - 2[/tex]

[tex]f(-6) = 12 - 2[/tex]

[tex]f(-6) = 10[/tex]

We have that:

[tex]f(6) = f(-6) = 10[/tex]

Hence, the statement is true

Solving (b): [tex]f(6)=2 * f(3)[/tex]

We have that:

[tex]f(6) = 10[/tex]

Next, we solve for f(3) by substituting 3 for x in [tex]f(x) = \frac{x^2}{3} - 2[/tex]

[tex]f(3) = \frac{3^2}{3} - 2[/tex]

[tex]f(3) = \frac{9}{3} - 2[/tex]

[tex]f(3) = 3 - 2[/tex]

[tex]f(3) = 1[/tex]

[tex]2 * f(3) = 2 * 1[/tex]

[tex]2 * f(3) = 2[/tex]

So:

[tex]f(6)=2 * f(3)[/tex]

[tex]10 \neq 2[/tex]

Hence, the statement is false

ACCESS MORE