Respuesta :

Answer:

x = 6, y = 13

Step-by-step explanation:

if DEF is congruent to JKL, this means that the sides of JKL are all equal to that of DEF.

Hence we can say;

DE = JK

EF = KL

DF = JL

Given

DE = 18,

EF =23,

DF = 9x-23,

JL = 7x-11

JK = 3y-21,

Required

Values of  x and y

Since DE = JK;

18 = 3y-21

18+21 = 3y

39 = 3y

y = 39/3

y = 13

Also, DF = JL

9x-23 = 7x-11

collect like terms

9x - 7x = -11+23

2x = 12

x = 12/2

x = 6

Hence the value of x is 6 and y is 13

Given: [tex]DE=18[/tex],[tex]EF=23,DF=9x-23,JL=7x-11,[/tex] and[tex]JK=3y-21.[/tex]

As [tex]\Delta[/tex][tex]DE[/tex][tex]F[/tex]  [tex]\cong[/tex]  [tex]\Delta JKL[/tex]

[tex]\Rightarrow DE=JK \ ; EF=KL \ and \ DF=JL[/tex]

[tex]\Rightarrow 18=3y-21 \ ; 23=KL \ and \ 9x-23=7x-11[/tex]

     [tex]y=13[/tex]         ; [tex]KL=23[/tex]    and        [tex]x=6[/tex]

Therefore, [tex]x=6[/tex]  and [tex]y=13[/tex]

ACCESS MORE