Respuesta :
Answer:
x = 6, y = 13
Step-by-step explanation:
if DEF is congruent to JKL, this means that the sides of JKL are all equal to that of DEF.
Hence we can say;
DE = JK
EF = KL
DF = JL
Given
DE = 18,
EF =23,
DF = 9x-23,
JL = 7x-11
JK = 3y-21,
Required
Values of x and y
Since DE = JK;
18 = 3y-21
18+21 = 3y
39 = 3y
y = 39/3
y = 13
Also, DF = JL
9x-23 = 7x-11
collect like terms
9x - 7x = -11+23
2x = 12
x = 12/2
x = 6
Hence the value of x is 6 and y is 13
Given: [tex]DE=18[/tex],[tex]EF=23,DF=9x-23,JL=7x-11,[/tex] and[tex]JK=3y-21.[/tex]
As [tex]\Delta[/tex][tex]DE[/tex][tex]F[/tex] [tex]\cong[/tex] [tex]\Delta JKL[/tex]
[tex]\Rightarrow DE=JK \ ; EF=KL \ and \ DF=JL[/tex]
[tex]\Rightarrow 18=3y-21 \ ; 23=KL \ and \ 9x-23=7x-11[/tex]
[tex]y=13[/tex] ; [tex]KL=23[/tex] and [tex]x=6[/tex]
Therefore, [tex]x=6[/tex] and [tex]y=13[/tex]