Respuesta :

Answer:

Machine B

Step-by-step explanation:

Since, Machine A covers [tex]\frac{5}{8}[/tex] square feet in [tex]\frac{1}{4}[/tex] hours,

Rate at which the Machine A is covering = [tex]\frac{\frac{5}{8}}{\frac{1}{4}}[/tex]

                                                                    = [tex]\frac{5}{8}\times \frac{4}{1}[/tex]

                                                                    = 2.5 square feet per hour

Machine B covers [tex]\frac{2}{3}[/tex] square feet in [tex]\frac{1}{5}[/tex] hours,

Rate at which the Machine B is covering = [tex]\frac{\frac{2}{3}}{\frac{1}{5}}[/tex]

                                                                    = [tex]\frac{2}{3}\times \frac{5}{1}[/tex]

                                                                    = [tex]\frac{10}{3}[/tex]

                                                                    = 3.33 square feet per hour

Therefore, Rate of Machine B is greater.

RELAXING NOICE
Relax